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The bifurcation problem of a two-degree-of-freedom system vibrating against a rigid
surface is studied in this paper. It is shown that there exist Hopf bifurcations in the
vibro-impact systems with two or more degrees of freedom under suitable system
parameters. In the paper, a centre manifold theorem technique is applied to reduce the
Poincaré map of the vibro-impact system to a two-dimensional one, and then the theory
of Hopf bifurcation of maps in R2 is applied to conclude the existence of Hopf bifurcation
of the vibro-impact system. The theoretical solutions are verified by numerical
computations. The quasi-periodic response of the system, represented by invariant circles
in the projected Poincaré sections, is obtained by numerical simulations, and routes of
quasi-periodic impacts to chaos are stated briefly.
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1. INTRODUCTION

The performance of vibrating systems with clearances between the moving components is
accompanied by impact action for the moving components in a large number of diverse
engineering fields. This occurs when the vibration amplitudes of some components of
systems exceed critical values (clearances or gaps). Examples of these types of machines
and equipment include vibration hammers, impact dampers, machinery for compacting,
milling and forming, gears, shakers, wheel–rail interaction of high speed railway coaches,
etc. These systems with impacts are strongly non-linear due to the existence of one or more
impact pairs of components. The optimization of designs for mechanical systems with
impacts must be based on an overall knowledge of the performance of vibro-impacting
systems. Hence phenomena of bifurcations and chaos in vibro-impacting systems have
been investigated extensively by many researchers in recent years. Much new ground has
been broken in analysing and understanding the performance of vibro-impact systems. A
survey of publications and results of research can be found partly in several monographs
[1–25]. The dynamics of one-degree-of-freedom vibro-impact systems have been studied
in great detail in references [1–15], which include bifurcations, singularities in vibro-impact
systems and chaos, etc. Bifurcations and chaos have also been analysed on corresponding
multi-degree-of-freedom systems in references [16–25]. However, the emphasis has been on
problems of period-doubling and saddle-node bifurcations. The phenomena of Hopf
bifurcations have only been investigated by a few researchers. Xie [15] investigated
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codimension two bifurcations and Hopf bifurcations of a single-degree-of-freedom system
vibrating against an infinite large plane. Natsiavas [22] analysed a two-degree-of-freedom
piecewise linear system under harmonic excitation and obtained quasi-periodic impacts
and their route to chaos by the numerical method. Ivanov [24] thought it possible for Hopf
bifurcation to exist in multi-degree-of-freedom vibro-impact systems for the conjugate pair
of multipliers intersecting the unit circle.

In this paper, the phenomena of Hopf bifurcation of a two-degree-of-freedom system
vibrating against an infinitely large plane are analyzed in great detail. First, the Poincaré
map of the vibro-impacting system is established; then a centre manifold theorem
technique [26–28] is applied to reduce the Poincaré map to a two-dimensional one. By
virtue of the two-dimensional map and theory of Hopf bifurcation of maps in R2, which
is set out in references [29] and [30], we are able to discuss the existence of Hopf bifurcation
of the vibro-impacting system. Finally, the quasi-periodic response of the system, presented
by invariant circles in the projected Poincaré sections, is obtained by numerical
simulations, and routes of quasi-periodic impacts to chaos are stated briefly.

2. PERIODIC IMPACTS AND THE POINCARÉ MAP

The mechanical model for a two-degree-of-freedom vibrator with masses M1 and M2 is
shown in Figure 1. The masses are connected to linear springs with stiffness K1 and K2.
The excitations on both masses are harmonic with amplitudes P1 and P2. The mass M1

impacts against a rigid surface when its displacement X1 equals the gap B. The impact is
described by a coefficient of restitution R, and it is assumed that the duration of impact
is negligible compared to the period of the force. Between impacts, for X1 QB, the
differential equations of motion are

$M1

0
0

M2% d2

dT2 6X1

X27+$ K1

−K1

−K1

K1 +K2%6X1

X27=6P1

P27 sin (VT+ t). (1)

The impact equation of mass M1 is

X� 1+ =−RX� 1−, (2)

where X� 1+ and X� 1− represent the impacting mass velocities of approach and departure
respectively. For convenience, the equations of motion (1) are rewritten in
non-dimensional form for x1 Q b as

$10 0
mm%6ẍ1

ẍ27+$ 1
−1

−1
1+ mk%6x1

x27=61− f2

f2 7 sin (vt+ t), (3)

Figure 1. A schematic of the two-degree-of-freedom impact oscillator.
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Figure 2. The stationary periodic motion (ABCDE) and perturbed motion (A'B'C'D'E') of mass M1.

Figure 3. The stationary periodic motion (HIJKLM) and perturbed motion (H'I'J'K'L'M') of mass M2.

where the non-dimensional quantities

mm =
M2

M1
, mk =

K2

K1
, f2 =

P2

P1 +P2
, v=VXM1

K1
, t=TXK1

M1
,

b=
BK1

P1 +P2
, xi =

Xi K1

P1 +P2
(4)

have been introduced. In equation (3), a dot denotes differentiation with to the
non-dimensional time t. Let c represent the canonical model matrix of equation (3), v1

and v2 denote the eigenfrequencies of the system. Taking c as a transition matrix, the
equations of motion (3), under the change of variables

X=cj, (5)

becomes

Ij� +Lj=F sin (vt+ t), (6)

where X=(x1, x2)T, I is an unit matrix of degree 2×2, L=diag [v2
1 , v2

2 ], F=cTP
P=(1− f2, f2)T and j is the response of the system, in canonical co-ordinates.
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The equations of motion (3) are resolved by using the formal co-ordinate and modal
matrix approach. The general solution of equation (3) takes the form

xi = s
2

j=1

cij (aj cos vj t+ bj sin vj t+Aj sin (vt+ t)), (7)

ẋi = s
2

j=1

cij (−aj vj sin vj t+ bj vj cos vj t+Aj v cos (vt+ t)) (i=1, 2), (8)

where cij are elements of the canonical modal matrix c, Aj are the amplitude parameters
and Aj =cT

j P/(v2
j −v2), aj and bj are the constants of integration, which are determined

by the initial conditions and modal parameters of the system.
In the extended phase space (Figures 2 and 3), the non-smooth curves ABCDE and

A'B'C'D'E' indicate, respectively, the periodic motion and the disturbed motion of M1,
and the curves HIJKL and H'I'J'K'L' represent, respectively, the periodic motion and the
perturbed motion of mass M2. The co-ordinates of the governing points on the phase orbits
show the boundary and continuity conditions of the vibro-impacting system and are
marked on Figures 2 and 3. We can choose a Poincaré section sWR4 ×S, where
s= {(x1, ẋ1, x2, ẋ2, u) $ R4 ×S, x1 = b}. By virtue of equations (2) and (3), the Poincaré
map can be established as

DX'= f(DX), (9)

where DX=(Dẋ1, Dx2, Dẋ2, Dt)T and DX'= (Dẋ'1 , Dx'2 , Dẋ'2 , Dt')T are the disturbed
vectors in the hyperplane s.

Under suitable system parameter conditions, the vibro-impact system given in Figure 1
can exhibit periodic behaviour. The periodic behavior means that if the dimensionless time
t is set to zero directly after an impact, it becomes 2p/v just before the next impact.
Periodic motion corresponds to the conditions that are shown by the co-ordinate of the
governing points, marked in Figures 2 and 3. After displacing the origin of the u

co-ordinate to an impact point o1, we obtain

x1 (0)= b, x1 (2p/v)= b, ẋ1+ (0)=−Rẋ1− (2p/v),

x2 (0)= x2 (2p/v), ẋ2 (0)= ẋ2 (2p/v), (10)

where ẋ1− (2p/v) is the impact velocity and R is the coefficient of restitution. The first and
second equations express the instantaneous nature of each impact, the third equation is
the impact law, and the fourth and fifth equations express the continuity of position and
velocity of mass M2 at the instant of impact. Inserting the governing points into the general
solution of equation (3), we can solve for the constants aj and bj of integration and the
phase angle t0 from equations (7) and (8) and express them as set out below.

If b=0, then let t0 = t̄0 :

t̄0 = tan−1 0(c22 c11 s1 (1− c2)v2 −c12 c21 (1− c1)v1) (1+R)v
Dv1 v2 (1− c1) (1− c2) (1−R) 1; (11)

otherwise,

t0 = cos−1 0tan t̄0 2z(tan2 t̄0 +1)d2 − b2

(tan2 t̄0 +1)d 1, (12)
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b1 =
dc22 v(1+R) cos t0

Dv1 (1−R)
, b2 =−

c21 v1 b1

c22 v2
, (13, 14)

ai =
bi si

1− ci
(i=1, 2) (15)

where si =sin 2pvi /v, ci =cos 2pvi /v, d=−(c11 A1 +c12 A2) and D= =c =. The 2 sign
means that it is possible to have two different periodic solutions under the same system
parameters for the vibro-impacting system. It should be noted that the existence of periodic
impacts requires equation (12) to meet the condition

btan t̄0 2z(tan2 t̄0 +1)d2 − b2

(tan2 t̄0 +1)d bE 1. (16)

Otherwise, it is impossible for periodic impacts to exist. Substituting equations (11)–(15)
into the general solutions of equation (3), we obtain the periodic solutions of the system
shown in Figure 1, which correspond to one impact during one cycle of the forcing:

xi = s
2

j=1

cij (aj cos vj t+ bj sin vj t+Aj sin (vt+ t0)) (t mod 2p/v), (17)

ẋi = s
2

j=1

cij (−aj vj sin vj t+ bj vj cos vj t+Aj v cos (vt+ t0)) (t mod 2p/v). (18)

Let us consider the perturbed motion. For simplicity of notation, we displace the origin
of the u co-ordinate to an impact point o2 in Figures 2 and 3. For x̃1 E b, the solutions
of the perturbed motion are written in the form

x̃i = s
2

j=1

cij (ãj cos vj t+ b	 j sin vj t+Aj sin (vt+ t0 +Dt)), (19)

x̃� i = s
2

j=1

cij (−ãj vj sin vj t+ b	 j vj cos vj t+Aj v cos (vt+ t0 +Dt)). (20)

Inserting the coordinate of governing points B' and I' into equations (19) and (20), we
can solve

ã1 =
1
D

(c22 b−c12 x20 −c12 Dx20 −DA1 sin (t0 +Dt)), (21)

ã2 =
1
D

(−c21 b+c11 x20 +c11 Dx20 −DA2 sin (t0 +Dt)), (22)

b	 1 =
1

Dv1
(c22 ẋ1+ +c22 Dẋ1+ −c12 ẋ20 −c12 Dẋ20 −DA1 v cos (t0 +Dt)), (23)

b	 2 =
1

Dv2
(−c21 ẋ1+ −c21 Dẋ1+ +c11 ẋ20 +c11 Dẋ20 −DA2 v cos (t0 +Dt)). (24)
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For the disturbed motion shown in Figures 2 and 3, the dimensionless time is set to zero
directly after an impact. It becomes (2p+Du)/v just before the next impact. Letting
te =(2p+Du)/v, substituting the formulas (21)–(24) and inserting the co-ordinate of
governing points E' and L' into equations (19) and (20), we obtain

s
2

i=1

c1i j	 i (te )= b, (25)

Dẋ'1+ =−R s
2

i=1

c1i j	
.
i (te )− ẋ1+, Dx'20 = s

2

i=1

c2i j	 i (te )− x20,

Dẋ'20 = s
2

i=1

c2i j	
.
i (te )− ẋ20, Dt'=Dt+Du(Dẋ1+, Dx20, Dẋ20, Dt). (26)

Let

g(Dẋ1+ , Dx20, Dẋ20, Dt, Du)= s
2

i=1

c1i j	 i (te )− b, (27)

where

j	 i(t)= ãi cos vi t+ b	 i sin vi t+Ai sin (vt+ t0 +Dt), (28)

j	 i (t)=−ãi vi sin vi t+ b	 i vi cos vi t+Ai v cos (vt+ t0 +Dt). (29)

The conditions under which there exist fixed points give

g(Dẋ1+, Dx20, Dẋ20, Dt, Du) =(0,0,0,0,0) = 0.

Suppose that (1g/1Du)(0,0,0,0) $ 0. According to the implicit function theorem, the equation
(27) can be solved as

Du=Du(Dẋ1+, Dx20, Dẋ20, Dt), Du(0, 0, 0, 0)=0 (30)

Inserting (30) into (26), we finally obtain the Poincaré map

Dẋ'1+ = f	 1 (Dẋ1+, Dx20, Dẋ20, Dt, Du)=
Def

f1 (Dẋ1+, Dx20, Dẋ20, Dt),

Dx'20 = f	 2 (Dẋ1+, Dx20, Dẋ20, Dt, Du)=
Def

f2 (Dẋ1+, Dx20, Dẋ20, Dt),

Dẋ'20 = f	 3 (Dẋ1+, Dx20, Dẋ20, Dt, Du)=
Def

f3 (Dẋ1+, Dx20, Dẋ20, Dt),

Dt'=Dt+Du(Dẋ1+, Dx20, Dẋ20, Dt)=
Def

f4 (Dẋ1+, Dx20, Dẋ20, Dt). (31)

Let v=v, the Poincaré map (31) can be expressed as

DX'= f(v, DX), (32)

�
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in which

DX=(Dẋ1+, Dx20, Dẋ20, Dt)T, DX'= (Dẋ'1+, Dx'20, Dẋ'20, Dt')T,

f(v, DX)= (f1, f2, f3, f4)T.

We expand the function f(v, DX) as a Taylor series in the variables DX and v:

f(v, DX)= s
p+ qe 1

Fpq vpDXq, (33)

Fpq =
1

p!q!
1p+ qf(v, DX)

1vp 1DXq b(vc,u)

, Fp0 0 0, pe 1, (34)

f(v, DX)=F01 DX+ vF11 DX+ v2F21 DX+F02 [DX2]+F03 [DX3]+ , . . . , (35)

where F02 and F03 denote the terms of two and three respectively.
Linearizing the Poincaré map at the fixed point results in the matrix

1f1

1Dẋ1+

1f1

1Dx20

1f1

1Dẋ20

1f1

1Dt

1f2

1Dẋ1+

1f2

1Dx20

1f2

1Dẋ20

1f2

1Dt
Df(v, 0)=G

G

G

G

G

G

G

F

f

1f3

1Dẋ1+

1f3

1Dx20

1f3

1Dẋ20

1f3

1Dt

G
G

G

G

G

G

G

J

j

. (36)

1f4

1Dẋ1+

1f4

1Dx20

1f4

1Dẋ20

1f4

1Dt (v,0,0,0,0)

Let DX=(Dx1, Dx2, Dx3, Dx4)T denote DX=(Dẋ1+, Dx20, Dẋ20, Dt)T. It is easy to calculate
the following derivatives in matrix (36):

1Du

1Dxi
=−

1g
1Dxi >0 1g

1Du1 (i=1, 2, 3, 4), (37)

1fj

1Dxi
=

1f	 j
1Dxi

+
1f	 j

1Du
·
1Du

1Dxi
(i, j=1, 2, 3, 4). (38)

The stability of periodic impacts can be determined by the eigenvalues of Df(v, 0). If
all eigenvalues of Df(v, 0) are inside the unit circle, then the periodic solution is stable;
otherwise, it it unstable. When the eigenvalues of Df (v, 0) with the largest modules are
on the unit circle, bifurcations occur in various ways according to their numbers and their
positions on the unit circle, resulting in qualitative changes in the system dynamics. In this
paper, we shall consider only the case of a single complex conjugate pair of simple non-real
eigenvalues, crossing the unit circle with non-zero velocity as v passes vc ; the remainder
of the spectrum of Df(v, 0) will be assumed to stay strictly inside the unit circle. In this
case, it is possible that Hopf bifurcation may take place.

3. REDUCTION AND HOPF BIFURCATION OF THE POINCARÉ MAP

Let us continue to consider the Poincaré map

DX'= f(v, DX), (32)
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where DX $ R4, v is a bifurcation parameter and v $ R1. Let DX*(v) be a fixed point for
the system (32) for v in some neighbourhood of a critical value v= vc at which Df(v, 0)
satisfies the following assumptions:

(H1) Df(v, 0) has a pair complex conjugate eigenvalues l1, l2 on the unit circle, and the
other eigenvalues l3, l4 stay inside the unit circle;

(H2) lm
1 (vc )$ 1, m=1, 2, 3, 4, 5;

(H3)
d=l1 (v) =

dv bv= vc

q 0.

Let ri denote the eigenvector of Df(v, 0) corresponding to li (v) (i=1, 2, 3, 4). If r3 and
r4 are a complex conjugate pair of non-real eigenvectors, then let eigenmatrix
P=(Re r1, −Im r1, Re r3, −Im r3); otherwise, let P=(Re r1, −Im r1, r3, r4). For all v in
some neighbourhood of vc , the map (32), under the change of variables

DX=DX*+PY, v= vc + m, (39)

becomes

Y'=F(m, Y), (40)

where DF(m, 0) has the form

DF(m, 0)= &av −v

a

D', (41)

in which a=Re l1 (vc + m), v=Im l1 (vc + m) and D is a real matrix with eigenvalues l3

and l4.
Let z= y1 + iy2, W=(y3, y4)T, G=F1 + iF2 − lz, l= l(m)= a+iv,

H=(F3, F4)T −DW and let us show that the map (40) may be written in the form

z'= lz+G(z, z̄, W; m), W'=DW+H(z, z̄, W; m). (42)

For the system (42), there exists a local centre manifold [27], given by

W=W(z, z̄; m), (43)

on which the local behaviour of the system (42) can be reduced, by substituting equation
(43) to equation (42), to a two-dimensional map. In order to determine the centre manifold
W(z, z̄; m), we have to expand W(z, z̄; m) in a Taylor series about (0, 0, m) and solve the
equation

W(lz+G(z, z̄, W(z, z̄; m); m), l�z̄+G�(z, z̄, W(z, z̄; m); m); m)

=DW(z, z̄; m)+H(z, z̄, W(z, z̄; m); m). (44)

The Taylor series expansion of W(z, z̄; m) about (0, 0, m) is expressed as

W(z, z̄; m)= s
L

i+ j=2

Wij (m)
ziz̄j

i!j!
+O(=z =L+1). (45)

By substituting equation (45) into equation (44) and solving equation (44) for Wij , we can
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obtain

Wij =(lil�j −D)−1Hij (i+ j=2),

W30 = (l3 −D)−1(H30 +3H1
10 W20 −3lG20 W11 −3lG20 W20),

W21 = (l2l�−D)−1(H1
01 W20 +2H1

10 W11 − l�G20 W11 −2lG11 W20

−2lG�11 W11 − l�G�02 W02 +H21),

W12 =W�21, W03 =W�30, (46)

where Wij , Gij and Hij denote Wij (m),Gij (m) and Hij (m) respectively:

Gij =
12G

1zi 1�zj b(0,0,0;m)

, Hij =
12H

1zi 1�zj b(0, 0, 0, m)

. (47, 48)

H1
10 =

1

1z 01H
1w1

,
1H
1w21b(0,0,0;m)

, H1
01 =

1

1z 01H
1w1

,
1H
1w21b(0,0,0;m)

. (49)

Inserting equation (45) into equation (44), we have

W(z, z̄; m)= s
3

i+ j=2

Wij (m)
ziz̄j

i!j!
+O(=z =4). (50)

Let

z'= lz+ g(z, z̄; m), (51)

where

g(z, z̄; m)=G(z, z̄, W(z, z̄; m); m). (52)

The expanded form of g(z, z̄; m) is given by

g(z, z̄; m)= s
L

i+ j=2

gij (m)
ziz̄j

i!j!
+O(=z =L+1). (53)

Introducing equation (53) into equation (51), we obtain

gij =Gij , (i+ j=2), g30 =G30 +3G1
10 W20, g21 =G21 +2G1

10 W11 +G1
01 W20 (54)

in which

G1
10 =

1

1z 01G
1w1

,
1G
1w21b(0,0,0;m)

, G1
01 =

1

1z̄ 01G
1w1

,
1G
1w21b(0,0,0,m)

. (55)

The map (32) has been reduced to a two-dimensional one by using a centre manifold
theorem technique [26, 27]. The two-dimensional map is expressed as

z'= lz+ s
3

i+ j=2

gij (m)
ziz̄j

i!j!
+O(=z =4). (56)
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Using the map (56) and applying the following lemma, we can discuss the existence of Hopf
bifurcation for the map (32) as v passes through vc .

Lemma [29, 30]. Let Fm be a one-parameter family of diffeomorphisms on R2, satisfying
the following conditions:

(C1) Fm (0, 0)= (0, 0) for all m;

(C2) DFm (0, 0) has two conjugated eigenvalues l0, l�0 with =l0 == =l�0 ==1;

(C3) d =l(m) =/dm =m=0 q 0;

(C4) lm(0)$ 1, m=1, 2, 3, 4, 5.

Subject to assumptions (C1)–(C4). We can make a smooth m-dependent change of
co-ordinate bring Fm into the form

Fm (y1, y2 )=NFm (y1, y2)+O(=Y =)5. (57)

In polar co-ordinates,

NFm =(=l(m) =r− f1 (m)r3, 8+ u(m)+ f3 (m)r3). (58)

If f1 (0)q 0( f1 (0)Q 0), Fm has an attracting (repelling) invariant circle for mq 0 (mQ 0).
Suppose that the complex form of F0 is

F0 (z)= l0 z+ s
3

i+ j=2

gij (0)
ziz̄j

i!j!
+O(=z =4); (59)

then

f1 (0)=Re$(1−2l0)l�0

2(1− l0)
g20 g11 %+ 1

2 =g11 =2 + 1
4 =g02 =2 −Re0l�0 g21

2 1. (60)

where l0 = l(0).
If the assumptions (H1)–(H3) hold for the Poincaré map, it is easy to show that the

map (56) satisfies these conditions (C1)–(C4). It is not difficult to choose a set of system
parameters for the vibro-impacting model shown in Figure 1 under which the Poincaré
map (32) satisfies the assumptions (H1)–(H3). By computing f1 (0), we can conclude the
existence of an invariant circle for the map (56) and its stability in terms of the sign of
f1 (0). Because on the centre manifold (43) the local behaviour of the Poincaré map can
be reduced to the two-dimensional one (56), it is certain that if the map (56) has an
attracting (repelling) invariant circle for mq 0 (mQ 0), a supercritical (subcritical) Hopf
bifurcation will take place for the vibro-impacting system (32) at v= vc .

4. EXAMPLES AND NUMERICAL SIMULATIONS

In this section the analysis developed in the former section is verified by the presentation
of results for the vibro-impacting system given in Figure 1. A system with mm =2, mk =5,
f2 =0, b=1·5 and R=0·8 has been chosen for analysis. v is taken as a bifurcation
parameter and the eigenvalues of Df(v, 0) corresponding to v on the interval
[0·7219, 0·7396] are computed. The variation of the eigenvalues of Df(v, 0) as v varies on
the interval, are shown in Figure 4. When v increases on the interval [0·7219, 0·7368), all
eigenvalues stay strictly inside the unit circle. With =l1,2 (v) = increasing and =l3,4 (v) =
decreasing, Df(v, 0) has a complex conjugate pair of eigenvalues l1, l2 on the unit circle
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for v= vc =0·7368; the remainder of the eigenvalues are still inside the unit circle. A pair
of eigenvalues l1, l2 will cross the unit circle, and the other eigenvalues will still stay inside
the unit circle, as v passes through vc . vc is a Hopf bifurcation value at which the map (56)
satisfies the conditions (C1)–(C4). By virtue of formulae (A3) and (60), we obtain

d=l1 (v) =
dv bv= vc

=
d=l1 (m) =

dm bm= mc

=3·0701, f1 (0)=1·361.

For the results mentioned above, we can conclude that under the chosen system
parameters the map (56) has an attracting invariant circle for mq 0. This means that a
supercritical Hopf bifurcation occurs for the vibro-impacting system (31), with the same
system parameters. This conclusion conforms with the digital simulation results below.

The projected Poincaré sections for the vibro-impacting system are shown in Figures 5
and 6. The Poincaré section is taken in the form {(x1, ẋ1, x2, ẋ2, u) $ R4 ×S, x1 = b}. As
expected, a quasi-periodic response, represented by the attracting invariant circles of
Figures 5 and 6, appears at v=0·7369, just after the Hopf bifurcation value of v=0·7368.
Taking a theoretical fixed point of the system corresponding to v=0·7369 as an initial
map point, we obtain the attracting invariant circles shown in Figure 5 by analysing the
vibro-impacting system shown in Figure 1 for 5000 impacts. The invariant circles shown
in Figure 6 are obtained by taking a point outside the circles shown in Figure 5 as an initial
map point and analysing the system for 4000 impacts. As the value of v moves further away
from the Hopf bifurcation value, the circles expand. A single torus doubling begins to
occur as the value of v passes through v=0·7438. Any further observable torus doubling
is not founded in digital simulations. The torus doubling at v=0·744 is plotted in Figure 7.
Following some single torus doubling, the system settles into chaotic motion (Figures 8
and 9).

There exists another route by which Hopf bifurcation leads to chaos in the
vibro-impacting system shown in Figure 1. This route is characterized by a phenomenon
in which the system settles into chaotic motion without a single torus doubling but with
a quasi-attracting circle (attracting inside the circle and repelling outside it). In order to
study such a case, we analyze the vibro-impacting system with a set of system parameters
mm =4, mk =2, f2 =0, b=1·8 and R=0·8. The conjugate pair of eigenvalues intersecting
the unit circle are shown in Figure 10. The intersecting velocity of the eigenvalues passing
through the unit circle and f1 (0) are

d=l1 (v) =
dv bv= vc

=
d=l1 (m) =

dm bm= mc

=0·641, f1 (0)=1·096.

It is concluded by the same method that a supercritical Hopf bifurcation takes place for
the system under the second set of chosen system parameters at v= vc =0·4906. A single
torus doubling is not observed in the numerical analysis. There are single attracting
invariant circles in all projected Poincaré sections up to v=0·4943. In Figure 11 is plotted
an attracting invariant circle at v=0·4917. When v=0·4944, the invariant circle becomes
attracting inside the circle and repelling outside it. We take a theoretical fixed point
corresponding to v=0·4944 as the initial condition and analyse the system for 4000
impacts. When the system is analysed for 1112 impacts, a large transition of phase angle
occurs and the vibro-impacting system settles into chaotic motion (Figure 12).
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Figure 4. The conjugate pair of eigenvalues intersecting the unit circle; v varies on the interval [0·7219, 0·7396].

Figure 5. The quasi-periodic response of the vibro-impact system shown in projected Poincaré sections: mm =2,
mk =5, f2 =0, b=1·5, R=0·8, v=0·7369.
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Figure 6. The quasi-periodic response of the vibro-impact shown in projected Poincaré sections: mm =2, mk =5,
f2 =0, b=1·5, R=0·8, v=0·7369.

Figure 7. The torus doubling of the vibro-impact system shown in projected Poincaré sections: mm =2, mk =5,
f2 =0, b=1·5, R=0·8, v=0·744.

Figure 8. The chaotic motion of the vibro-impact system shown in projected Poincaré sections: mm =2, mk =5,
f2 =0, b=1·5, R=0·8, v=0·7519.
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Figure 9. The chaotic motion of the vibro-impact system shown in projected Poincaré sections: mm =2, mk =5,
f2 =0, b=1·5, R=0·8, v=0·7555.

Figure 10. The conjugate pair of eigenvalues intersecting the unit circle; v varies on the interval [0·458, 0·492].

Figure 11. The quasi-periodic response of the vibro-impact system shown in projected Poincaré sections:
mm =4, mk =2, f2 =0, b=1·8, R=0·8, v=0·4917.
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Figure 12. The chaotic motion of the vibro-impact system shown in projected Poincaré sections: mm =4,
mk =2, f2 =0, b=1·8, R=0·8, v=0·4944. (a) The system is analysed for 1112 impacts from theoretical fixed
point; (b, c) the system is analysed for 4000 impacts from a theoretical fixed point.

5. DISCUSSION

It is certain that Hopf bifurcations exist in a vibro-impacting system with two or more
degrees of freedom under suitable system parameters. We have observed quasi-periodic
impacts of the system shown in Figure 1 by theoretical analysis and numerical simulations.
The method stated in the paper can be applied to other vibro-impacting models with two
degrees of freedom, to confirm the existence of Hopf bifurcations (quasi-periodic impacts)
in them. The method is effective for vibro-impact systems with two degrees of freedom.
Because of the rapid increase in the number of equations, it becomes complicated to
expand the Poincaré map as a Taylor series in the variables DX and v, and so the method
also becomes difficult to apply. Since the degenerated case of Hopf bifurcation does not
easily appear in engineering and practical applications, in general we may still analyse
quasi-periodic impacts of vibro-impacting systems with more than two degrees of freedom
by virtue of the satisfaction of the three assumptions (H1)–(H3) and numerical simulations.
We have stated briefly the routes of quasi-periodic impacts to chaos in the former section.
Two routes of quasi-periodic impacts to chaos are often observed in our numerical
analyses, the former of which is analogous to the explanation in references [31] and [32].
It is necessary to make a further theoretical study of routes of quasi-periodic impacts to
chaos.
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APPENDIX

Let us define the eigenvectors z0 and z*0 such that

F01 z0 = l0 z0, F*01 z*0 = l�0 z*0 , (z0, z*0 )=1, (z�0, z*0 )=0, (A1)

where F01 =Df(vc , 0), F*01 is an adjoint of F01 and (*, *) is the duality product between E
and its dual E*. Then

l	 1 = (F11 (z0), z*0 ),
d=l1 (v) =

dv bv= vc

=Re(l	 1 e−iv0), (A2, A3)
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